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Abstract. We found that two thin hard needles can collide hundreds of times without any
additional forces. The number of collisions is sensitive to the initial conditions, especially the
rotational phase of each needle. Long continuation of the chattering collision takes place at a
limited region in the parameter space. The scattering angle was almost constant for the collision
number in a frequent chattering collision, while the change in the collision number in a short
chattering collision brings about a sizeable perturbation on the scattering process.

Two anisotropic hard bodies can collide more than once without any additional constraints,
which is termed as chattering collision. The chattering collision is one of the difficult and
open problems in the kinetic theory of gases [1], because it brings about extra correlation in
the scattering process as demonstrated in the molecular dynamics simulation of model fluids
[2]. We, however, know little of the characteristics of the chattering collision, because the
collision dynamics of anisotropic hard bodies is governed by non-analytic equations. We
carried out extensive numerical calculations on the collision dynamics between two thin
hard needles, and found that the needles can collide more than a hundred times. A delicate
tuning for the initial conditions is necessary to realize a long continuation of the chattering
collision, because the collision number is very sensitive to the rotational phase of each
needle.

Suppose an infinitely thin, homogeneous, and smooth hard needle as shown in figure 1.
The needle has a unit mass and a unit length, and rotates around the unit vectorj of the polar
angles(θ, φ) with the angular velocityω(> 0). The direction of the needle is represented
by the unit vectoru andψ(t)(= ψ(0) + ωt) denotes its rotational phase at timet . When
the needle is on thexy-plane,ψ(0) is set equal to zero.

We will consider the collision between the two hard needles A and B as described
above. The origin is at the centre of mass of two needles. Att = 0, the centres of two hard
needles are on thexy-plane (0.5,±b/2, 0), whereb is the impact parameter. Their initial
translational velocities are(±0.5, 0, 0), which determine the unit time here.

When A and B collide at timet , the following equations hold [3]:

F(t) = (uA ∧ uB) · (rA − rB) = 0

|αA | 6 0.5 |αB| 6 0.5
(1)

whererX is the position of the centre of the needle,X, andαX is the distance of the contact
position from the centre of the needle,X, measured alonguX. Since the relative velocity
between the contact positions of two needles at the collision instance is given by the time
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Figure 1. Model infinitely thin hard needle. The needle rotates around
the axisj.

Figure 2. xy-projection of the trajectories of the needles,
when they collide 71 times. The initial conditions are
given in the text. Each short line represents snapshots of
each needle with the time interval 0.3. Heavy lines are the
trajectories of the centre of each needle. The inset shows
the centres of the needles at each collision instance.

derivative of the minimum distance between two needles|F(t)|/|uA ∧ uB|, the amount of
the momentum exchange|1P | is expressed as [3]

[1+ 6(α2
A + α2

B)]|1P | =
1

|uA ∧ uB|
∣∣∣∣dF(t)dt

∣∣∣∣ . (2)

When the needles slip on each other, the functionF(t) is constant at zero during the slip.
Equation (2) implies that the two needles never slip on each other with a momentum transfer.
The collision number,N , will not diverge, when a finite interaction acts at each collision
instance.

If we know when (or where) the needles collide, the collision dynamics between the
two needles is an elementary problem. However, it is unfeasible to solve equation (1)
analytically, because the functionF(t) contains trigonometric functions in a complicated
manner. We calculated numerically the trajectories of two hard needles by a modified
technique in [3]. The major modification is an implementation of a bisection method
together with the second-order Newton–Raphson method.

Numerical calculations show that the scattering process is very sensitive to the rotational
phase, and that the chattering collision is rather common than rare when the impact parameter
b is less than 0.5. Long continuation of the chattering collision(N > 10), however, was
found in a very narrow range ofψA(0) andψB(0). We will show the details of typical
trajectories of two needles, in which the initial conditions are as follows. The impact
parameterb is 0.44, the initial polar angles(θ, φ) of the rotational axes of A and B are
(0.71π,−0.57π) and (0.18π,−0.41π), respectively, and their angular velocitiesωA and
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Figure 3. Dependence of the collision numberN (heavy full curve) and the scattering angle
χ (light full curve) on the initial rotational phase of the needle A,ψA(0), at ψB(0) = 0.17π ,
in (a) the whole colliding region and (b) the region of the frequent chattering collision. The
dotted curve represents the scattering angle at the first collisionχ(1).

ωB are 1.71 and 1.92.
Figure 2 shows trajectories of the needles accompanying a frequent chattering collision

(N = 71; ψA(0) = −0.16π , ψB(0) = 0.17π ). The average time interval of the chattering
collision is 0.0186 with the standard deviation 0.0050, and the centre of the needle moves
by 0.523 during the chattering collision. The scattering angleχ of the overall process is
0.414π , and the average of the scattering angle in each collision is 0.0132π . The collision
points on the needle A change gradually during the chattering collision from one end to the
other. The first collision takes place atαA = 0.488 andαB = 0.280, and the last (71st)
collision atαA = −0.471 andαB = −0.471.

Figure 3 shows the dependence of the number of collisionsN and the scattering angle
χ on the initial rotational phase of A,ψA(0), at ψB(0) = 0.17π . The extent ofψA(0)
of a frequent chattering collision(N > 10) occupies 0.0059π in that of the chattering
collision (N > 1) 0.23π (the extent of the whole colliding region amounts to 0.33π ).
The collision number is very sensitive to the initial conditions for the frequent chattering
collision. When we decreaseψA(0) from −0.1600π by 10−4π , the number of collisions
increase from 71 to 401. However, no collision happens with the further decrease inψA(0)
by 10−4π . The precision in the numerical calculation becomes a serious problem in the
frequent chattering condition: for example the four-byte floating-point package gave 405
collisions atψA(0) = −0.1601π instead of 401 by the eight-byte or ten-byte floating-point
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package.
DecreasingψA(0) from 0.170π , the scattering angle at the first collisionχ(1) is

diminished with a maximum 0.462π aroundψA(0) = 0. The frequent chattering is
accompanied with the diminution ofχ(1). The scattering angle of the whole scattering
processχ changes suddenly as the collision number changes. The change in the scattering
angle by the collision number is sudden but not always discontinuous; for example
according to a detailed calculation, the change at the transition ofN = 1–2 in figure 3(a)
was continuous, while the changes at the transitions ofN = 0–1 andN = 2–3 were
discontinuous. The perturbation by each collision in the chattering collision decreases
with increasing the collision number, and the collision number of the frequent chattering
collision affects little the result of the whole scattering process. The scattering angleχ at
N = 401(0.4133π) is almost the same as that atN = 71(0.4138π).

We found a long continuation of the chattering collision more than hundreds of times
as described above. However, we have not known whether the collision number has an
upper bound yet. We detected a trajectory with a very large number of collisions more than
a million in a large set of the initial conditions, although two needles cannot slip on each
other as shown in equation (2). The possibility of the infinite number of collisions in the
chattering collision is still under study.
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